Classification of a family of Hamiltonian-stationary Lagrangian submanifolds in C$^{n}$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Existence of Hamiltonian Stationary Lagrangian Submanifolds in Symplectic Manifolds

Let (M,ω) be a compact symplectic 2n-manifold, and g a Riemannian metric on M compatible with ω. For instance, g could be Kähler, with Kähler form ω. Consider compact Lagrangian submanifolds L of M. We call L Hamiltonian stationary, or H-minimal, if it is a critical point of the volume functional Volg under Hamiltonian deformations, computing Volg (L) using g|L. It is called Hamiltonian stable ...

متن کامل

Hamiltonian Actions and Homogeneous Lagrangian Submanifolds

We consider a connected symplectic manifold M acted on properly and in a Hamiltonian fashion by a connected Lie group G. Inspired to the recent paper [3], see also [12] and [24], we study Lagrangian orbits of Hamiltonian actions. The dimension of the moduli space of the Lagrangian orbits is given and we also describe under which condition a Lagrangian orbit is isolated. If M is a compact Kähler...

متن کامل

Construction of Hamiltonian-minimal Lagrangian Submanifolds in Complex Euclidean Space

We describe several families of Lagrangian submanifolds in the complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.

متن کامل

Hamiltonian stationary Lagrangian surfaces in C 2

We study Hamiltonian stationary Lagrangian surfaces in C, i.e. Lagrangian surfaces in C which are stationary points of the area functional under smooth Hamiltonian variations. Using loop groups, we propose a formulation of the equation as a completely integrable system. We construct a Weierstrass type representation and produce all tori through either the integrable systems machinery or more di...

متن کامل

On the Existence of Hamiltonian Paths Connecting Lagrangian Submanifolds

Abstract. We use a new variational method—based on the theory of anti-selfdual Lagrangians developed in [2] and [3]—to establish the existence of solutions of convex Hamiltonian systems that connect two given Lagrangian submanifolds in R . We also consider the case where the Hamiltonian is only semi-convex. A variational principle is also used to establish existence for the corresponding Cauchy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2006

ISSN: 0386-2194

DOI: 10.3792/pjaa.82.173